Centralizers of commutators in finite groups
نویسندگان
چکیده
Let G be a finite group. A coprime commutator in is any element that can written as [x,y] for suitable x,y∈G such π(x)∩π(y)=∅. Here π(g) denotes the set of prime divisors order g∈G. An anti-coprime an [x,y], where π(x)=π(y). The main results paper are follows. If |xG|≤n whenever x commutator, then has nilpotent subgroup n-bounded index. every x∈G, H nilpotency class at most 4 [G:H] and |γ4(H)| both n-bounded. We also consider groups which centralizers coprime, or anti-coprime, commutators bounded order.
منابع مشابه
Centralizers in Locally Finite Groups
The topic of the present paper is the following question. Let G be a locally finite group admitting an automorphism φ of finite order such that the centralizer CG(φ) satisfies certain finiteness conditions. What impact does this have on the structure of the group G? Equivalently, one can ask the same question when φ is an element of G. Sometimes the impact is quite strong and the paper is a sur...
متن کاملFinite groups have even more centralizers
For a finite group $G$, let $Cent(G)$ denote the set of centralizers of single elements of $G$. In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent, then $Gcong S_3, D_{10}$ or $S_3times S_3$. This result gives a partial and positive answer to a conjecture raised by A. R. Ashrafi [On finite groups with a given number of centralizers, Algebra Collo...
متن کاملCentralizers of Involutions in Finite Simple Groups
It has been known for a long time that the structure of a finite simple group is intimately connected with the structure of the centralizers of its involutions. An old result of Brauer and Fowler asserts, in fact, that there are at most a finite number of simple groups in which the centralizer of an involution has a given structure. A more specific, pioneering result of Brauer established that ...
متن کاملFinite groups all of whose proper centralizers are cyclic
A finite group $G$ is called a $CC$-group ($Gin CC$) if the centralizer of each noncentral element of $G$ is cyclic. In this article we determine all finite $CC$-groups.
متن کاملFinite $p$-groups and centralizers of non-cyclic abelian subgroups
A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq Z(G)$. In this paper, we give a complete classification of finite $mathcal{CAC}$-$p$-groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.09.005